
AVT 2019/2020 MEIC Alameda/Tagus

Aluno: ________ __

Animação e Visualização Tridimensional

 Mestrado em Engenharia Informática e de Computadores
Alameda/Tagus

1º mini-teste

16 Outubro 2019

The mini-test has a maximum duration of 45 minutes. Answer with black or blue pen to

the following questions and justify in detail all the answers. If necessary you can use the

back of the respective sheet to complete the answer. Calculators, cell phones or other

mobile devices are not allowed. Identify all the sheets of your mini-test.

Good luck!

Synopsis of some commands used in the code samples of the mini-test :
void lookAt(GLdouble eyeX, GLdouble eyeY, GLdouble eyeZ, GLdouble centerX,

GLdouble centerY, GLdouble centerZ, GLdouble upX, GLdouble upY, GLdouble upZ);

1. Assume that you have set up one buffer with vertices’ attributes (position, normal,

tangent and texture coordinates) of an object by using glBufferData() together

with glBufferSubData(..). You will draw that object with the call

glDrawElements(GL_TRIANGLES,……).

a) (1.5 points) What VBOs should be bound to the object’s VAO?

Since we are using glBufferData() with glBufferSubData(..) we have two VBOs: The

VBO with vertices’ attributes (type GL_ARRAY_BUFFER) and the VBO with the

indices of the vertices per triangle (type GL_ELEMENT_ARRAY_BUFFER).

b) (1.5 points) The object is a mesh with 5 quads. How many elements do

you have in the index buffer?

5 x 2 triangles/quad x 3 vertices= 30 elements

2. (1.5 points) Consider the following OpenGL code sample. Indicate the location

(index) bound to the normal attribute variable in the GLSL p program?

enum AttribType {VERTEX_COORD, TEXTURE_COORD, TANGENT_ATTRIB, NORMAL_ATTRIB};

glBindFragDataLocation(p, 0,"colorOut");

 glBindAttribLocation(p, VERTEX_COORD, "position");

 glBindAttribLocation(p, NORMAL_ATTRIB, "normal");

 glBindAttribLocation(p, TEXTURE_COORD, "texCoord");

glBindAttribLocation(p, TANGENT_ATTRIB, "tangent");

 glLinkProgram(p);

 pvm_Id = glGetUniformLocation(p, "m_pvm");

 vm_uniformId = glGetUniformLocation(p, "m_viewModel");

normal_uniformId = glGetUniformLocation(p, "m_normal");

glBindAttribLocation(p, NORMAL_ATTRIB, "normal"); imposes location 3 (fourth

position in the enum) for the GLSL normal GLSL variable

AVT 2019/2020 MEIC Alameda/Tagus

Aluno: ________ __

3. Consider the following excerpt of code in OpenGL 3.3. Assume that a stack

mechanism was implemented for all three types of matrices MODEL, VIEW and

PROJECTION used by the Geometric Transform stage of the OpenGL pipeline.

void renderScene(void) {

….

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

loadIdentity(VIEW);

loadIdentity(MODEL);

lookAt(0.0, 0.0, 2.0, 1.0, 1.0, 2.0, 1.0, 0.0, 0.0)

translate(MODEL, 0.5f, 1.5f, 1.0f);

send_matrices(); //send the matrices PROJECTION, VIEW and MODEL to GLSL

draw_obj1();

pushMatrix(MODEL);

scale (MODEL, 2.0f, 0.5f, 1.0f);

send_matrices(); //send the matrices PROJECTION, VIEW and MODEL to GLSL

draw_obj2();

popMatrix(MODEL);

translate (MODEL, 1.5f, 1.5f, 1.5f);

send_matrices(); //send the matrices PROJECTION, VIEW and MODEL to GLSL

draw_obj3();

……

a) (2.5 points) Calculate the last column of the matrix VIEW sent to the GLSL

in order to draw each of the three objects.

𝑉𝑅𝑃 = [𝑒𝑦𝑒𝑥 𝑒𝑦𝑒𝑦 𝑒𝑦𝑒𝑧] = [0 0 2]

𝑉𝑃𝑁 = [𝑐𝑒𝑛𝑡𝑒𝑟𝑥 − 𝑒𝑦𝑒𝑥 𝑐𝑒𝑛𝑡𝑒𝑟𝑦 − 𝑒𝑦𝑒𝑦 𝑐𝑒𝑛𝑡𝑒𝑟𝑧 − 𝑒𝑦𝑒𝑧] = [1 1 0]

𝑢𝑝⃗⃗ ⃗⃗ = [𝑢𝑝𝑥 𝑢𝑝𝑦 𝑢𝑝𝑧] = [1 0 0]

𝑛⃗ =
𝑉𝑃𝑁

‖𝑉𝑃𝑁‖
=

[1 1 0]

2
= [

1
√2

⁄ 1
√2

⁄ 0]

𝑢⃗ =
𝑛⃗ × 𝑢𝑝⃗⃗ ⃗⃗

‖𝑛⃗ × 𝑢𝑝⃗⃗ ⃗⃗ ‖
=

[1
√2

⁄ 1
√2

⁄ 0] × [1 0 0]

‖[
1

√2
⁄ 1

√2
⁄ 0]‖

=
[0 0 −1

√2
⁄]

‖[0 0 −1
√2

⁄]‖

= [0 0 −1]

𝑣 = 𝑢⃗ × 𝑛⃗ = [0 0 −1] × [1
√2

⁄ 1
√2

⁄ 0] = [1
√2

⁄ −1
√2

⁄ 0]

𝑀𝑉𝑖𝑒𝑤 =

[

𝑢𝑥 𝑢𝑦 𝑢𝑧 −𝑢⃗ ∙ 𝑉𝑅𝑃

𝑣𝑥 𝑣𝑦 𝑣𝑧 −𝑣 ∙ 𝑉𝑅𝑃

−𝑛𝑥 −𝑛𝑦 −𝑛𝑧 𝑛⃗ ∙ 𝑉𝑅𝑃

0 0 0 1]

=

[

0 0 −1 2
1

√2
⁄ −1

√2
⁄ 0 0

−1
√2

⁄ −1
√2

⁄ 0 0

0 0 0 1]

b) (2.5 points) Calculate the matrix MODEL sent to the GLSL in order to

draw each of the three objects.

I x T[0.5 1.5 1.0]

AVT 2019/2020 MEIC Alameda/Tagus

Aluno: ________ __

I x T[0.5 1.5 1.0] x S[2.0 0.5 1.0]

I x T[0.5 1.5 1.0] x T[1.5 1.5 1.5]

4. Analyze, in the last sheet of the mini-test, the OpenGL(OGL) code snippet as well as

the GLSL version 330 of both vertex shader and fragment shader. The RGB channels

of the three components of the source light have unit values. The reflection model

is the Blinn-Phong.

a) (1.5 points) Consider the variable lightPos used in this OGL program

Identify the type of source light used as well as the space coordinates of its

position. Justify.

Point light since the last coordinate of ligthPos is 1.

lightPos is multiplied by the VIEW matrix before to be sent to the GLSL

program which means that it was described in World coordinates

b) (2.5 points) Write the GLSL code to calculate, in Eye space, the following

entities:

n (normal), l (light direction), pos (vertex position), e (eye direction) and h

(half-vector)

vec4 pos = m_viewModel * position;

 vec3 l = normalize(vec3(l_pos – pos))

vec3 n = normalize(m_normal * normal.xyz);
vec3 e = normalize(vec3(-pos));

vec3 h = normalize(l + e);

c) (2 points) What shading technique is being used to draw the scene? Why?

Gouraud shading. Blinn-Phong color is calculated in the vertex shader,

thus at vertex level. Then the color is interpolated by the rasterizer and

received in the corresponding fragment shader that only displays the

received color.

d) (1.5 points) Identify the space where the built-in GLSL variable

gl_Position is described.

 Clipping Coordinates space

e) (3 points) Assume, for a particular vertex, that the angle between n and l,

and the angle between e and n, are both 60º. Calculate the value of

colorOut. You should indicate how to calculate both diffuse and specular

components.

(cos 30º = 0.866, cos 45º = 0.707, cos 60º = 0.5)

H between l and e which means an angle half of 2*60=60. Vector e, in this case coincides

the mirror vector. This means an angle 0 between h and n

Intensity_diffuse= dot (n, l)= cos 60

Intensity_spec= dot(h,n) = cos 0 = 1

Max {[0 0.8 0.8]*0.5 + [0 0 0.5]* 1 * exp100; [0.1 0.2 0.2]} = [0.1 0.4 0.9]

AVT 2019/2020 MEIC Alameda/Tagus

Aluno: ________ __

GLfloat lightPos[4] = {4.0f, 6.0f, 2.0f, 1.0f};

GLfloat mat_ambient[] = { 0.1 0.2, 0.2, 1.0 };

GLfloat mat_diffuse[] = { 0.0, 0.8, 0.8, 1.0 };

GLfloat mat_specular[] = { 0.0, 0.0, 0.5, 1.0 };

GLfloat mat_shininess= 100.0f;

multMatrixPoint(VIEW, lightPos, result);

loc = glGetUniformLocation(p,”l_pos”);

glUniform4fv(loc, 1, result);

loc = glGetUniformLocation(p, "mat.ambient");

glUniform4fv(loc, 1, mat_ambient);

loc = glGetUniformLocation(p, "mat.diffuse");

glUniform4fv(loc, 1, mat_diffuse);

glGetUniformLocation(p, "mat.specular");

glUniform4fv(loc, 1, mat_specular);

loc = glGetUniformLocation(p, "mat.shininess");

glUniform1f(loc,mat_shininess);

------Vertex shader

uniform mat4 m_pvm; // proj * view * model

uniform mat4 m_viewModel; // view * model

uniform mat3 m_normal; // normal matrix

struct Materials {

 vec4 diffuse, ambient, specular, emissive;

 float shininess; };

uniform Materials mat;

uniform vec4 l_pos;

in vec4 position;

in vec4 normal;

out vec4 v_color;

void main () {

 vec4 pos = ____________________________;

 vec3 l = ___;

 vec3 n = __;
 vec4 spec = vec4(0.0);

 float intensity = max(dot(n,l), 0.0);

 if (intensity > 0.0) {

 vec3 e = __;

 vec3 h = ___;

 float intSpec = max(dot(h,n), 0.0);

 spec = mat.specular * pow(intSpec, mat.shinines);

 }

 v_color = max(intensity*mat.diffuse+spec,mat.ambient);

 gl_Position = m_pvm * position;

}

------fragment shader

out vec4 colorOut;

in vec4 v_color;

void main() {

 colorOut = v_color;

}

